The primary structure of a 4.0-kDa photosystem I polypeptide encoded by the chloroplast psaI gene.

نویسندگان

  • H V Scheller
  • J S Okkels
  • P B Høj
  • I Svendsen
  • P Roepstorff
  • B L Møller
چکیده

Partial amino acid sequences have been determined for a 4.0-kDa photosystem I polypeptide from barley. A comparison with the sequence of the chloroplast genome of Nicotiana tabacum and Marchantia polymorpha identified the polypeptide as chloroplast-encoded. We designate the corresponding gene psaI and the polypeptide PSI-I. The barley chloroplast psaI gene was sequenced. The gene encodes a polypeptide of 36 amino acid residues with a deduced molecular mass of 4008 Da. The 4.0-kDa polypeptide is N-terminally blocked with a formyl-methionine residue. Plasma desorption mass spectrometry established that the polypeptide is not post-translationally processed except for possible conversion of a methionine residue into methionine sulfone. The hydrophobic 4.0-kDa polypeptide is predicted to have one membrane-spanning alpha-helix and is homologous to transmembrane helix E of the D2 reaction center polypeptide of photosystem II.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of gene expression during higher plant chloroplast biogenesis. Protein synthesis and transcript levels of psbA, psaA-psaB, and rbcL in dark-grown and illuminated barley seedlings.

Etioplasts of 4.5-day-old dark-grown barley synthesize and accumulate most of the membrane and nearly all the soluble polypeptides of mature chloroplasts of light-grown seedlings. Etioplasts do not synthesize a limited set of chloroplast-encoded polypeptides which are major constituents of chloroplast thylakoid membranes: two chlorophyll apoproteins of photosystem I (68 and 65 kDa), two chlorop...

متن کامل

Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis.

Etioplasts of 5-day-old dark-grown barley seedlings synthesize most of the soluble and membrane proteins found in chloroplasts of illuminated plants. Prominent among these proteins are the large subunit of ribulose bisphosphate carboxylase and the alpha- and beta-subunits of the chloroplast ATPase. However, etioplasts do not synthesize four chloroplast-encoded proteins which are major constitue...

متن کامل

Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation

The integral membrane proteins of photosystem II (PS II) reaction center complexes are encoded by chloroplast genomes. These proteins are absent from thylakoids of PS II mutants of algae and vascular plants as a result of either chloroplast or nuclear gene mutations. To resolve the molecular basis for the concurrent absence of the PS II polypeptides, protein synthesis rates and mRNA levels were...

متن کامل

A 4-kDa maize chloroplast polypeptide associated with the cytochrome b6-f complex: subunit 5, encoded by the chloroplast petE gene.

Four polypeptides, three of which are chloroplast-encoded, have been shown to be associated with the thylakoid membrane cytochrome b6-f complex. In this report, the gene for a fifth polypeptide, which copurifies with the b6-f complex, is identified through the use of an antibody generated against a synthetic decapeptide predicted from a maize chloroplast DNA sequence. The deduced 37-amino acid ...

متن کامل

COOH-terminal processing of polypeptide D1 of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex.

Mutant LF-1 of the green alga Scenedesmus obliquus has been described by Metz and co-workers (Metz, J. G., Pakrasi, H., Seibert, M., and Arntzen, C. J. (1986) FEBS Lett. 205, 269-274) to be inactive for light-driven oxygen evolution, despite a functional Photo-system II reaction center. A polypeptide, D1, implicated in the ligation of the primary photoreactants of photosystem II, was shown to m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 264 31  شماره 

صفحات  -

تاریخ انتشار 1989